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Abstract. Recently, Jensen showed that the positron annihilation rates in metals 
can he calculated ratha successfully within the local-demity approximation (LDA) 
using the total electroo density es the only input. Thm, the divipion into core, v* 
knee, and, in the case of transition metals, the d electrons, is not necessary. Jetsen 
calculated thepositronlifetimeson thebesir of non4-consistent eledmn structures. 
We have calculated in this work positron annihilation r a t e  using self-cdstent elec- 
tron structures. The use of self-consistent elect- densities d e s  the LDA lifetimes 
longer and, especially in the -e of simple metals, a better agrement with exper- 
imentd results is obtained. In this artide we pnsmt m&s for several simple snd 
transition met& and study the trends along the diRerent eolumne and rows of the 
Periodic Table. Moreover, we have calculated the poaitron annihilation rates &o for 
semiconductors using a slightly different enhancement function. The T~LUIMS for the 
success of the LDA are discussed and the implieations to the calcdation of lifetimes 
for positrons trapped at crystal defects are demonstrated by examples. 

1. Introduction 

During the last decade we have been witnessing the rapid development of the ab- 
initio modelling of solids on the basis of the density-functional theory 111. Most of the 
important basic properties of solids, such as the cohesive properties, can be calculated 
without any adjustments to the experimental results. Moreover, in many cmes it is 
possible to predict by calculations values for quantities that sometimes probe in a very 
indirect way the atomic and electronic structures of solido, and thereby calculations 
give essential support for the analysis of the experimenlal data. This is also the 
prevailing situation in the case of positron annihilation 121. 

The basis for the calculation of positron states in solids is the two-component 
density-functional theory [3]. In this theory all the ground-state properties of the 
electron-positron system in an external field can be determined from functionals 
depending on the electron and positron densities. The idea of the twmxnnponent 
density-functional theory is that the system of interacting particles can be described 
as a system of non-interacting particles by introducing exchange and correlation func- 
tionals. When the local density approximation (LDA) is made for these functions, 
average electron and positron densities are easily solved by minimizing the total en- 
ergy functional. The meaning of the exchange and correlation for electrons is that 
the electron density is depleted around a given electron due to Pauli principle and 
Coulomb repulsion (exchangecorrelation hole). In the case of positrons the normal 
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experimental situation is that there is only one positron in the sample at a given time. 
This means that the exchange effects for a positron delocalized in the whole sample 
vanish. The Coulomb correlation means that there is a pile-up of electrons around the 
positron. The attractive Coulomb interaction between an electron and ita exchange- 
correlation hole gives the electron exchange and correlation energy. Correspondingly 
the Coulomb interaction connected with the positron and its screening cloud gives the 
positron correlation energy. In LDA these energies are calculated as spatial integrals 
from functions which at a given point depend only on the electron density at that 
point. The energy-density functions needed are known from the calculations for the 
homogeneous electron gas [4]. 

A natural continuation to the above picture is that the positron annihilation rate, 
i.e. the inverse of the positron lifetime, is calculated within LDA, too. This was recently 
suggested by Jensen [5]. The annihilation rate is directly proportional to the contact 
electron density at the positron. LDA for the annihilation rate means that the contact 
electron density, including the average density and the pile-up (enhancement) due to 
correlation, depends at a given point on the total electron density at that point. The 
total annihilation rate is obtained again as a spatial integral and the enhancement at 
a given point is obtained from the data for the positron in the homogeneous electron 
gas [3]. Jensen [5] applied the LDA scheme for several metals using non-self-consistent 
electron densities as the starting point. Ais calculation gave rather systematically 
about 10% shorter lifetimes than the measured ones. We show below that the use 
of self-consistent electron densities increase the positron lifetimes and in the case of 
simple metals the discrepancy between experimental and theoretical results is actually 
removed. Moreover, the calculations using self-consistent electron structures avoid 
the arbitrariness connected with the atomic configurations which have to be chosen 
according to some criteria when constructing non-self-consistent electron structures [6]. 
This is an important benefit for the systematic studies of trends along the rows of 
Periodic Table. 

Previously [7J, we have calculated the total annihilation rates for positrons in 
solids by dividing the electron density into core, valence, and possibly also d level 
contributions and using constant enhancement factors for the positron annihilation 
with core and d level electrons and a density-dependent enhancement (in LDA) for 
valence electrons only. The new LDA formulation is preferable because it is in ac- 
cordance with the density-functional theory, which states that the total densities are 
the physical quantities and in principle a division into different density contributions 
is not justified. Moreover, the old formulation leads to somewhat arbitrary constant 
enhancement factors for the core and d level annihilations, the latter of which has 
been used as an adjustable parameter in order to reproduce the experimental positron 
bulk lifetimes (lifetimes for delocalized positrons in a perfect crystal). In contrast, the 
LDA formulation is a pure ob-initio method without any adjustable parameters and 
should therefore have a much larger predictive power than the old formulation. 

In this work we test the LDA scheme by calculating positron lifetimes for most 
common metals, group-IV, and 111-V compound semiconductors. The self-consistent 
electron structures for the perfect periodic solid lattices are obtained by the linear- 
muffin-tin-orbital method (LMTO) within the atomic-spheres approximation (ASA) [SI. 
The positron states are a h  calculated with the same method. We have already applied 
the LDA scheme and these numerical methods for the calculation of positron energetics 
(i.e. positron affinity, deformation potential, positron work function, and positronium 
formation potential) for the same metals as in this work [9, lo]. The great benefit of 
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this kind of ab-initio calculation is that they enable systematic studies to be made of 
trends along the rows and columns of the Periodic Table, and thereby increase our 
understanding of positron properties in different systems. In this work we inwtigate 
also how the new LDA affects the former pictures we have for annihilation of positrons 
trapped at crystal defects. For this purpose we calculate the Elf-consistent electron 
structures and positron states for vacancies in AI and GaAs by the Green's function 
method [ l l ,  121 corresponding to LMTO-ASA. The results are compared with those 
obtained by applying LDA in the three-dimensional superimposed atom method [q. 

2. Theory 

For a positron delocalized in a perfect crystal the two-component theory attains a 
very simple form, because the positron density at each point is vanishingly small, and 
does not affect the average electron density. This is the zero-positron-density limit of 
the theory. In this case the electron structure is first determined self-consistently with 
some standard band-structure code. Thereafter the potential V(r) felt by positron is 
obtained in LDA as 

where n-(r) and VcOu,(r) are the self-consistent electron density and the Coulomb 
potential due to the nuclei and the electron density n-(r). tor,(n) is the positron- 
electron correlation energy, which is due to the formation of the screening electron 
cloud around the positron and it is calculated for a delocalized positron in a homoge- 
neous electron gas with density n. The above potential is inserted into the same code 
which is used in the calculation of the electron structures and the solution with the 
lowest energy is the ground state of the positron in the perfect crystal. 

Once the positron and electron densities have been found, the total positron anni- 
hilation rate can be determined from their overlap. Here one has to take into account 
the pile-up or enhancement of the electron density at the positron. In LDA the total 
positron annihilation rate X reads as 

where nt(r) is the positron density and r(n) is the positron annihilation rate in a 
homogeneous electron gas with density n. Recent many-body calculations result in 
the following interpolation form for r(n) [3]: 

r(n) = arEcn(l+ 1.23rs + 0.8295rtl' - 1.26r: + 0.3286r2/2 + ir : ) .  (3) 

Above, ro is the classical electron radius, c is the velocity of light and rs = ( sn)1/3 
4 r  is the usual electron density parameter. In equation (3) the prefactor lrricn IS the 

independent-particle model (PM) result for the annihilation rate. The part inside the 
brackets defines the so-called (density-dependent) enhancement factor. In equation 
(3) it is assumed that the positron is completely screened by electrons and therefore 
the use of LDA with equation (3) is valid for metals. 

In semiconductors or insulators the positron screening by electrons is not perfect 
due to the existence of the band gap. This has to be taken in account in the electron- 
positron correlation energy and in the annihilation rate. In the case of semiconductors 
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we rely on the semiempirical formulation presented in [13]. The formulation leans on 
the results for the homogeneous electron gas. The annihilation rate (3) has to be 
substituted with 

r(n) = ar;cn[l -t 1.23rB + 0.8295{/2 - 1.26r: + 0.3286r:la + i ( 1 -  l/cm)rz] (4) 

where L, is the high-frequency dielectric constant. The form of equation (4) can be 
justified by two constraints for the screening cloud of the positron [13]. Firstly, at the 
positron (r = 0) the electron density n(r) obeys the cusp condition 

(8n/8r)l,,o = -n(O). (5) 

Secondly, the screening cloud An(.) induced by the positron has to contain (1 - $) 
electrons, i.e. 

p" An(r)4xrz dr = (1 - 1). 
Jo \ Em/ 

This guarantees that the Coulomb potential due to positron is the long range potential 
proportional to &. The effects due to the reduced screening on the correlation 
potential are less pronounced and they can be taken into account by noting that the 
correlation potential scales as - (A - A0)'f3 1141, where A is the actual annihilation 
rate and A, is the IPM result. In the case of insulators the screening efficiency of 
the valence electrons is reduced due to the larger band gaps from that for metals, 
more than in the case of semiconductors. Therefore the semiempirical formulation 
(equation (4)) based on positron screening in free electron gas is no longer adequate. 
For insulators one could use, for example, the formalism presented in 1131, but it is 
based on fitting to experimental positron bulk lifetimes and thus it is not an ab-initio 
method. 

In the present work weobtain the self-consistent electron structures for the perfect 
periodic lattices by the LMTO-ASA method [8]. For the vacancies we employ the 
corresponding Green function method [ l l ,  121. In the ASA the lattices are divided into 
space-filling spheres, centred at host nuclei and in the case of diamond- or zincblende- 
structure semiconductors spheres centred around the tetrahedral interstitial sites are 
used, too. Use of the ASA means also that potentials and charge densities are spherical 
averages within these spheres. The ASA violates the actual three-dimensional geometry 
most strongly in the interstitial regions near the sphere surfaces. This violation is, 
however, not severe for the electron states [15], and experience [12,2,9] as well as 
the results presented below show that this holds also for the positron states. More 
important is that the electron density is determined self-consistently. In fact, in the 
case of positron energetics in LDA [9, lo], the ASA has the great benefit that it provides 
a unique energy reference level for electrons and positrons. 

3. Results and discussion 

Positron bulk lifetimes calculated in the LDA for elemenlal metals and semiconductors 
Si, Ge, and Sn are shown in figure 1. Bulk lifetimes for nine 111-V compound semi- 
conductors are given in figure 2. The lattice constants correspond to 300 K, except 
those for a l d i n e  metals, and the values used in actual calculations are given in [9] 
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and [I31 for metals and non-metals, respectively. In the case of metals only BCC and 
FCC structures are used, i.e. the hexagonal structures are substituted with FCC ones 
with the same Wigner-Seita radii. Diamond or zincblende structures are used for all 
semiconductors. The electron structures are spin-compensated and scalar-relativistic 
in all cases. Moreover, the frozen-core approximation is employed, i.e. only the valence 
electrons (including the uppermost d electrons for transition and noble metals as well 
as for Zn, Cd, and Hg) are allowed to relax from their free atom distributions. 

Positron Bulk Lifetime (ps) 

AI si 

Figure 1. Calculated paditron bulk Lifetimes T (ps) for elemental metals and group 
IV semiconductors. The lattice S t N d W  and Lattice constants used in the calcula- 
tions are given in [9]. 

A N I O N  

-I- * 
U 246 255 278 

Figure 2. Calculated positron bulk lifetimes T (ps) for nine III-V compound semi- 
conductors. AU compounds have the Zinc blende Lattice structure and the lattice 
parametag and dielectric constants wed are given in [13]. 

The calculated positron bulk lifetimes for metals vary from 86 ps (Os) to 407 ps 
(Cs). The trends seen in the lifetimes along the 3d, 4d and 5d rows of the Periodic Ta- 
ble are very similar to the behaviour of the Wigner-Seitz radii. The positron lifetime 
is longest for the alkali metals and decreases thereafter rapidly towards the centre of 
the d series in question. Around the middle of a series the positron lifetimes vary only 
little between the adjacent elements and thereafter the lifetime rises slightly towards 
the noble metals. The similar behaviour of the positron bulk lifetime and the Wigner- 
Seitz radius reflects the importance of the size of the open interstitial volume and the 
corresponding interstitial electron density in determining the total positron annihila- 
tion rate (see below). In the case of diamond- or zincblende-structure semiconductors 
this conclusion is even more evident from the strong correlation between the effective 
electron density seen by the positron and the unit cell volume of the lattice 1131. 

Experimental positron bulk lifetimes have been collected for example in [I61 
and 1131. The present LDA values for the transition metals are maybe slightly shorter 



3460 M J Puska 

than the measured ones. In the case of simple metals and semiconductors agreement 
with experimenta is generally better. The comparison is, however, somewhat difficult, 
especially if one is interested in the small details in the trends between different metals 
and semiconductors, because the lifetimes quoted originate from different sources and 
the measured lifetime for one particular metal or semiconductor may vary even by 
10 ps or more. The reasons for these variations may lie in the sample preparation 
(annealing), in timing devices (e.g. lifetime spectrometers with BaF, seem to give sys- 
tematically smaller lifetimes than those with plastic scintillators [17J), or in the data 
analysis (where the -called source corrections play an important role). In order to 
give the reader some idea on the predictive power of the LDA ab-inilio method, but to 
avoid the above described difficulties in comparison, we give in table 1 pasitron bulk 
lifetimes [18] measured recently using the same experimental set-up (plastic scintilla, 
tors) and analysed with the same methods. The present LDA results are also given 
in table 1. The theoretical lifetimes for the transition metals given are about 10 ps 
shorter than the experimental ones, whereas in the case of semiconductors the the- 
oretical lifetimes are maybe slightly too long. However, it is gratifying to note that 
the relative differences between the 3d metals Fe, Ni, and Cu are very similar both 
according to measurements and calculations. 

Table 1. Measured positron bulk lifetimes 7'"P [18] compared with present thewet- 
i d  "alum T ' ~ ~ ~ ~ ,  In the experiments [lS] the samples have been cardully annealed 
beforr measuring with a conventional plastic scintillator fast-fast positron Lifetime 
spectrometer. A *'Na positron source inside Ni foil has been sandwiched hetween two 
sample pieces. The Lifetime spectra have heen analysed with one lifetime component 
after G0-e corrections. 

We have calculated the positron bulk lifetimes also for the 11-IV compound semi- 
conductors CdTe and HgTe and for the insulators C (diamond), GaN, MgO, and Sic  
using the above described semiempirical model (equation (4)) for screening. The lat- 
tice data used are given in [13]. The calculated lifetimes 282 ps and 261 ps for CdTe 
and HgTe, respectively, are somewhat shorter than the experimental ones collected 
in [13]. However, one should note that the theoretical values depend on the dielec- 
tric constant. The dielectric constant, on the other hand, can vary considerably as a 
function of composition in the actual samples, which are usually ternary compounds 
of the type Cd,Hg,-,Te. Therefore the conclusion is that LDA seems to be able to 
describe the annihilation also in these 11-VI compounds, where the annihilation with 
the uppermost cation d electrons is important. The calculated positron bulk lifetimes 
for C, GaN, MgO, and S i c  are 95,158,125, and 142 ps, respectively. With the excep- 
tion of MgO these values are considerably lower than the experimental hulk lifetimes 
quoted in [13]. Thus, it is obvious that the screening model of equation (4) based on 
the properties of the free electron gas cannot describe the electron enhancement in 
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wide-gap insulators. 
In order to further analyse the positron annihilation characteristics in solids and 

in order to be able to compare with previous theoretical works, we divide the total 
annihilation rate A (equation (2)) into core (A,) and valence components (A,) as 
suggested by Jensen [5]. That is, 

where n, and nv are the densities corresponding to the core and valence electron lev- 
els. In the case of transition metals we treat the uppermost d electrons as valence 
electrons, because due to the sd hybridization the division to s and d valence electrons 
is ambiguous. As a matter of fact, the division of the to td  electron density into com- 
ponents with physical meaning is not, in principle, possible in the density-functional 
theory. Further, following Jensen we define the enhancement factors for the core and 
valence annihilations as 

where 
calculated in equation (7), but r(n) is substituted by 

and are the core and valence annihilation rates in IPM, i.e. they are 

(9) IPM 2 r (n) = mom. 

In the above definitions it is assumed that the enbancement factors do not depend 
on the energy of the electron participating in the annihilation. However, according 
to theory and experiments the enhancement increases as a function of the electron 
energy [19]. Therefore the enhancement factors (8) are average quantities, and in 
particular the core enhancement factors obtained are upper estimates of the true 
factors. Similarly, the true core annihilation rates would be lower than those calculated 
with equation (7). One should also note that following Jensen we have calculated the 
IPM annihilation rates using a positron wavefunction, which corresponds to the total 
potential (1). In [6], for example, the lPM rate is calculated from a wavefunction, 
which is constructed without the correlation potential. We have calculated that the 
use of the latter definition would increase the present core enhancement factors by of 
the order of 10% whereas the effect on the valence enhancement factors is smaller. 

The partial annihilation rates and the enhancement factors obtained in this work 
are collected in table 2. In the 3d and 5d series the core annihilation rate has a 
parabolic shape with the maxima in the middle of the series at Cr and W, respectively. 
In the case of 4d series there is a shallow local minimum in the middle at hlo. The 
increase of the core annihilation rate to the right in the beginning of the d series 
means the increase of the overlap of positron and core-electron densities. This is 
due to the shrinkage of the interstitial open volume since the Wigner-Seitz radius 
decreases strongly whereas the size of the repulsive core region decreases more slowly. 
The decrease of the Wigner-Sits radius results from the filling of the bonding d 
orbitals. In the latter half of the d series anti-bonding d orbitals are being filled and 
the Wigner-Seita radius is nearly constant. The core electrons become more strongly 
bound when the nuclear charge increases and thus the core annihilation rate decreases. 
In each d series the valence annihilation rate is Seen to increase as a function of the 
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nuclear charge until a slight drop at the end of each series. The increasing trend 
reflects the increase of the electron density in the interstitial region when filling the d 
levels. The opposite behaviour of the core and valence annihilation rates in the latter 
half of the d series compensate each other in the total annihilation rate and therefore 
the variations in the positron lifetimes between different metals are rather small in 
these regions of the Periodic Table, as can be seen from figure 1. 

Table 2. Cdculated poaitmn annihilstica dLsrsctcliatic. for perfect a y s t d  latticcs. 
Positron annhihtim rat- with core (&) and vdmcc (A.) electnu, and the core 
(TC) and valence (n) enhancement factcm M even. A,, A., 7 c ,  and 7v M deked 
in equations (7)-(9). 

Host Ac A. 7< 7" Host A. A. 7 c  n 
(m-1) (m-') (M-l) (M-') 

Li 
Be 
NS 
M s  
Al 
Si 
K 
Ca 
SC 

Ti 
V 
cr 
Mn 
Fe 
CO 
Ni 
cu 
Zn 
Ge 

0.382 2.896 
0.577 6.711 

0.568 2.401 
0.525 3.704 
0.504 5.520 
0.138 4.388 
0.559 2.028 
0.617 2.754 
1.129 3.894 
1,672 5.173 
2.052 6.553 
2.166 7.723 
1.753 7.923 
1.684 8.261 
1.590 8.698 
1.460 8.915 
1.127 8.308 
0.598 6.851 
0.405 3.983 

3.263 7.997 Rb 
2.2% 3.619 Sr 
3.713 11.170 Y 
2.867 5.557 Zr 
2.484 4.047 Nb 
2.251 4.490 MO 

TC 
RU 5.927 18.212 

Rh 3.969 7.788 

Pd 3.104 4.825 

As 2.753 3.863 

Cd 2.537 3.403 

Sn 2.406 3.178 
2.325 3.178 
2.263 3.118 CS 

2.132 3.019 LU 

2.070 3.437 TS 

BS 

Hf 

W 

2.193 3.053 

2.092 3.107 

2.411 4.866 
Re 
OS 
lr 
Pt 
Au 
Pb 

0.610 
0.635 
1.089 
1.540 
2.017 
1.912 
2.159 
2.051 
1.771 
1.401 
0.96961 
0.509 
0.387 
0.654 
0.897 
1.330 
1.699 
2.073 
2.172 
2.135 
2.027 
1.741 
1.413 
1.022 
0.191 

1.917 6.904 20.889 
2.499 4.550 9.037 
3.476 3.431 5.260 
4.751 2.961 4.055 
6.165 2.701 3.482 
7.075 2.584 3.307 
8.414 2.445 3.077 
9.064 2370 3 . m  
8.950 2.329 3.017 
8.324 2.293 3.102 
7.328 2.259 3.285 
5.990 2.245 3.690 
3.248 2.693 6.294 
1.803 8.436 25.136 
2.276 4.886 9.185 
3.708 3.141 4.886 
5.025 2.796 3.923 
6.498 2.584 3.424 
7.840 2.466 3.175 
8.850 2.318 3.044 
9,650 2.311 2.959 
9.784 2.267 2.953 
9.205 2.250 3.017 
8.301 2.221 3.143 
5.167 2.164 4.127 

The core enhancement factors given in table 2 decrease monotonically to the right 
along each d series. At the beginning of a series the decrease is very steep whereas at 
the end the rate is small. The decrease reflects the strengthening of bonding of the 
core electrons to the nucleus as the nuclear charge increases. The valence enhancement 
factors are very large for the alkaline metals and decrease to the right in the Periodic 
Table. The decrease is strong at the beginning of a series but declines very rapidly. A t  
the end of each series the valence enhancement factor increases slightly. The behaviour 
of the valence enhancement factor is directly correlated with the enhancement of the 
electron density at the positron in a free electron gas. This is given by the contents of 
the brackets in equation (3), which indicates that the enhancement increases strongly 
when the electron gas density decreases (ra increases). 

Previously, the core annihilation rates for alkaline, 3d transition, and some 4d 
transition metals have been calculated by Sob [ZO]. First he calculated the core an- 
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nihilation rates in IPM using non-self-consistent electron structures. Thereafter he 
used a constant core enhancement factor determined for every metal in a semiem- 
pirical model, which related the core enhancement factor to  the core polarizability. 
The trends obtained by Sob for the core annihilation rates are in a good agreement 
with the present results. In the case of the 3d metals his absolute values are larger 
than the present ones at the beginning of the series and smaller at the end of the 
series. The core enhancement factors obtained by Sob also obey the same trends as 
the present results. Ais absolute values for the 3d transition metals are in most cases 
slightly smaller and for 4d transition metals slightly larger than our values in table 2. 
However, the agreement is astonishing, because Sob’s model for the core enhancement 
factors differs totally from the present approach. 

Jensen [5] has calculated positron bulk lifetimes for several metals using the LDA 
description. The main difference between his calculationa and the present ones is 
that he used non-self-consistent electron structures based on atomic superposition. 
Further, in order to solve the positron wavefunction and to calculate the annihilation 
rate he used the Wigner-Seitz approximation with spherically averaged potential and 
charge densities. The general trend is that Jensen’s lifetimes are about 3-6 ps shorter 
than ours in this work. In the case of alkali metals the differences are, however, 
much more important, i.e. 10-25 ps. Due to this difference our results for the alkaline 
metals are in much better agreement with measurements than Jensen’s predictions. 
As will be discussed below, the too short positron lifetimes for alkali metals in Jensen’s 
calculations result from the use of non-self-consistent electron structures. The other 
differences are presumably due to numerical approximations. Jensen gives also the 
core, d level, and valence electron enhancement factors. His core enhancement factors 
are consistently lower than ours but his valence annihilation factors for simple metals, 
for which the comparison is possible, are in very good agreement with our results. The 
good agreement in the case of the valence enhancement factors results simply from the 
fact that the valence electron enhancement is mainly determined by the enhancement 
for the free electron gas in equation (3). 

Very recently Daniuk et a1 [6] have also made ab-initio calculations for positron 
annihilation rates in metals. However, their approach cannot be justified on the basis 
of density-functional formalism. They calculated the core annihilation rate using the 
zero-momentum limit of the electron-positron momentum-dependent enhancement 
factor for homogeneous electron gas. Moreover, this enhancement was calculated in 
the LDA, i.e. at agiven point it depends on the total density at that point. The valence 
annihilation rate was calculated in their apptoach in the same way as in this work or in 
Jensen’s work (equations (7) and (4)). Daniuk et a1 obtained the spherical Coulomb 
potentials around a nucleus in a solid by applying the Mattheiss construction. For the 
electron densities they used atomic wavefunctions either from free atom configurations 
or from the so-called solid-state Configurations. The core annihilation rates obtained 
by Daniuk el 01 agree well with the present ones: at the beginning of each d series 
their values are slightly larger than ours and the ordering changes towards the end 
of the series. Their valence annihilation rates are consistently about 5% lower than 
ours. This difference is presumably mainly due to different numerical approaches in 
constructing the valence electron densities. 

In order to study effects connected to the self-consistency of electron densities 
and effects due to approximations (ASA) in the lattice geometry, we have performed 
positron state calculations with non-self-consistent electron structures using the LMTO- 
ASA method and the three-dimensional superimposed atom method [7]. The positron 
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potential and electron density for the LMTO-ASA method have been calculated by su- 
perimposing free atom Coulomb potentials and charge densities and performing there- 
after the spherical averaging. In the three-dimensionalsuperimposed atom method the 
electron density and the potential sensed by positron are constructed by overlapping 
free atoms. Thereafter the positron wavefunction is solved from a three-dimensional 
Schrijdinger equation by a relaxation method and the positron annihilation rate is cal- 
culated by a three-dimensional integration. The results from these calculations for AI, 
K,  Fe, Cu, and Si are shown in table3. The results obtained by the LMTO-ASA method 
(NSC-ASA) are in a good agreement with those obtained by Jeneen [5] reflecting the 
fact that the approaches beyond the numerical details are identical. When compared 
with the self-consistent results given in figure 1 and in table 2 the non-self-consistent 
results show larger core annihilation rates. In the ucse of AI and transition metals 
Fe and Cu the larger core annihilation rates are compensated by the decrease of the 
valence annihilation rates and the positron lifetimes do not essentially change. But in 
the case of K and Si this kind of compensation is l e s  perfect and the self-consistency 
of the electron structure increases the positron lifetime remarkably. Figures 3 and 4 
clarify the situation further in the case of Fe. Figure 3 shows the spherically averaged 
self-consistent and non-self-consistent radial valence electron densities (4xr2n(r)). It 
can be seen that there is a transfer of electron density from the core region to the 
interstitia1 bond region when free atoms form the d i d .  This charge transfer lowers 
the self-consistent potential for the positron in the interstitial region and raises it in 
the core region, as can be seen from figure 4. As a result, the positron wavefunction 
in the self-consistent c m  is reduced in the core region and enhanced in the intersti- 
tial region relative to the one calculated using a non-self-consistent electron density. 
Thus, the positron density follows the relaxing electron density. The electron charge 
transfer and the changes in wavefunction decrease the core and increase the valence 
annihilation rate. 

Table 3. Positron annihilation characteristics for perfect AI, K, Fe, Cu, and Si 
kttiocs. The mults are obtained by using non-aclf-consistent dectmn structures in 
the LMTo-ASA method (NSGASA) or in the Idly three-dimensional superimposed 
atom method (NSC-30) [7]. Positron annihilation rates with core (Ac)  and vdence 
(A,) electrons, positron Lilctimes (71, and thecore (rC) and valence (7") enhancement 
factam M given. AE, A,, yC, and 7v LUP defined in equations (7) ~ (9). 

Method Host A. A" 7 7s 7" 
(--I) (F4 

NSC-ASA 0.643 
K 0.768 
Fe 1.946 
Cu 1.281 
Si 0.146 

NSC-ID AI 0.611 
K 0.752 
Fe 1.854 
Cu 1.241 
Si 0.142 

5.411 
1.970 
7.970 
8.177 
4.538 

5.340 
1.970 
7.682 
7.953 
4.441 

165 2.337 4.085 
365 4.733 18.063 
101 2.212 3.108 
106 2.052 3.077 
214 2.187 4.414 

168 2.342 4.125 
367 4.765 18.464 
105 2.222 3.155 
109 2.057 3.108 
218 2.201 4.485 

Comparing the results obtained by the LMTO-ASA (NSC-ASA) and the three- 
dimensional superimposed atom method (NSC-3D) one can conclude that the effects 
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DISTANCE (aJ 

Figure 3. Rsdid charge densities (4nrzn(r)) around a nudeus in BCC Fe. The s a -  
consistent valence rharge density (full eurw) is obh.ined by the LMTO-ASA method. 
The non+&-consistent valence ehwge density (broken EWVC) is obtained by auperim- 
posing free atom densities and averaging spherically the resulting three-dimensional 
density mound e nucleus. The core electron demity (chain -ye) is shown, too. 

DISTANCE (a,) 

Figure 4. Positmn potential V+ (v) and corresponding positron wavdunction around 
a nucleus in BCC Fe. The self-consistent potential ( f d  e-) is obtained b y  using in 
equation (1) the self-"istent electron density and Coulomb potential dculated by 
the LMTo-AS* method. The non-&-mnsistent potential (broken curve) is obtained 
by using the superimposed and spher idy  averaged electron density and Coulomb 
potential. The corresponding positron wavefunctions (full curye for the self-consistent 
potential and broken curve for the non-&soosistent potential) are dso calculated 
hy the LMTO-ASA method. 

due to the geometry violation in the ASA are rather small. The net effect is that the 
more accurate treatment of the geometrical shape of the Wigner-Seitz cell and the 
electron and positron densities increases the positron lifetime by a few picoseconds. 

Previously we have calculated positron lifetimes in the model of superimposed 
atoms by treating the annihilation with core, d level, and valence electrons sepb  
rately [7,2]. For the core enhancement factor we used the rather low value of 7, = 1.5, 
which is supported by the theory explaining core enhancement at the high-electron- 
momentum region in the positron angular correlation measurements [21]. The en- 
hancement factor for the uppermost d level electrons was used as an adjustable pa- 
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rameter to give the experimental positron lifetimes for the transition metals. Finally, 
the semiempirical Brandt-Reinheimer form 1221 was used for the positron annihilation 
with valence electrons. In the case of simple metals, elemental semiconductors, and 
111-V semiconductors this scheme has no adjustable parameters. However, it predicts 
the experimental positron bulk lifetimes rather accurately [7,23,13]. In the light of 
the present results this success is due to effects which compensate each other: the use 
of too low a core enhancement factor decreases the core annihilation rate, whereas the 
lack of self-consistency in the electron densities increases it. Moreover, the semiem- 
pirical Brandt-Reinheimer formula contains a contribution from the core electrons, 
and therefore it overestimates the valence annihilation rate. (The Brandt-Fkinheimer 
formula may not be used instead of equation (3); it leads to  too low positron lifetimes 
due to the double counting of core annihilation rates.) 

In order to demonstrate the predictive power of the new LDA approach also in the 
case of positrons trapped at vacancy-type defects in solids, we have performed calcula- 
tions for vacancies in the FCC metal AI and in 111-V semiconductor GaAs. According 
to the twc-component density-functional theory [3] the electron and positron densities 
should be solved simultaneously self-consistently when the positron wavefunction is 
localized. This is because the localized positron affects the electron density also on 
the aoemge level besides the short-range screening, which is the only effect in the case 
of a delocalized positron. In this work however, we rely on the usual scheme, which is 
similar to the scheme valid rigorously only for the delocalized positron states. We first 
calculate the self-consistent electron structure for the vacancy without the influence 
of the localized positron. Thereafter the positron potential is constructed within the 
LDA, the localized positron state is solved, and finally the positron annihilation rate 
is calculated by taking the short-range screening, or the enhancement, into account 
as in the case of delocalized positrons. The use of the approximative scheme can be 
justified, because it gives similar results for the positron annihilation rates to the full 
twc-component theory [3,24]. This similarity results from cancellation of two effects: 
in the approximative scheme the average electron density at the defect is lower than in 
the fully self-consistent twc-component scheme, but the short-range electron enhance 
ment at the positron is then larger in the former scheme due to the lower average 
electron density. The calculations for vacancies employ in this work the self-consistent 
LMTO-ASA Green function method [Ill. This method introduces a further approxim* 
tion, namely, lattice relaxation around the defect is not taken into account, but the 
ions around the vacancies sit at their perfect crystal positions. 

The results for positron lifetimes in vacancies are collected in table 4. The use 
of LDA makes the calculated lifetimes shorter than those [7,13] calculated by treat- 
ing the core and valence annihilations separately. The same trend was noted also by 
Jensen [5], who calculated the positron lifetimes for vacancies in Cu and MO using 
the superimposed atom method. The self-consistent electron structures lead to longer 
positron lifetimes than the non-self-consistent ones, similarly to the case of bulk life- 
times. However, the differences are now smaller, because of the reduced importance of 
the core annihilation. Different charge states are possible for vacancies in semiconduc- 
tors, and therefore we have made calculations also for the singly negative Ga and As 
vacancies by the LM'IO-ASA Green function method, which is able to describe these 
states self-consistently. The dependence of the positron lifetime on the charge state 
is, however, weak in this model, which ignores the changes in the lattice relaxation. 
This result has also been obtained previously 1121. 

Experimental results for positron lifetimes at vacancies are given in table 4, too. 
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Table 4. Poeitmn lifetimes for vacancies in Al and GaAa. The present theoretical 
results with self-consistent (r,","*) and non-elf-comiotent (4:k) electron structurap 
M compared with those (e") obtained by calculating the con and valence aanihi- 
l a t h  rate separately. The self-comietent calcul&oas -#o"ned by the LMTO- 

AsA-Green's fundion method whereas the nonaelI-colaistmt results M obtained by 
the threedimensional superimposed atom method. The e-imental ( F ' P )  positron 
lifetimes M dso shown. The charge states of the Gsmd As vacancies in experiments 
M non-pitivq but othewise uncertain. 

vAI 247 245 253. 240b 
"00. 262 254 265= 26od 

263 256 26SC 29V 
265 260e 

V-' 263 vi: 
vi: 
.[7]. b[25]. '[l3]. d[26]. *[27]. 

The experimental positron lifetime of 240 ps (BaF, scintillators) [25] in the AI v a  
cancy is slightly shorter than the theoretical results. According to the measurements, 
a positron lifetime of 260 ps is connected with the Ga vacancy [26] whereas two life- 
times of 260 ps and 295 ps are connected with the As vacancy [27]. The positron 
lifetime at the As vacancy is explained as decreasing when the charge state of the 
vacancy becomes more negative [27]. Thus on the basis of the present results the 
experimental lifetime components of 260 ps can be explained to arise from vacancies 
where the open volume for the positron is similar to the open volume in an nnrelaxed 
vacancy. The positron lifetime of 295 ps would require a rather large relaxation in- 
creasing the open volume [28]. As the main conclusion from the comparison of the 
different theoretical and experimental positron lifetimes for vacancies we can state 
that the superimposed atom calculations employing non-self-consistent electron den- 
sities already give a rather good description for positron annihilation. Self-consistent 
electron structures are needed for the investigations of smaller details. On the other 
hand, the use of non-self-consistent electron densities gives smaller positron binding 
energies to defects than the use of self-consistent ones [12,13]. Therefore in the case 
of very low binding energies, the use of self- consistent electron structures may be 
crucial. 

Comparing the theoretical and experimental positron lifetimes it is evident that 
LDA describes the electron enhancement at the positron site surprisingly well, at least 
in the sense that the total annihilation rates or the positron lifetimes are rather well 
reproduced. A similar situation is met in the case of electron structure calculations, in 
which the LDA is used for electron exchange and correlatian effects [l]. The succes~ of 
the LDA in electron structure calculations has been argued to arise from constraints to 
the exchangecorrelation hole around an electron in the electron gas [29]. Namely, the 
spatial integral over the exchangecorrelation hole has to yield the lack of exactly one 
electron from the hole. Moreover, the exchangecorrelation energy can be calculated 
so that the hole density is first spherically averaged. Therefore an isotropic LDA hole 
is not a bad approximation even in an inhomogeneous electron gas, in which the 
true exchangecorrelation hole can be strongly anisotropic. The counterpart of the 
exchangecorrelation hole in the case of a positron in an electron gas is the screening 
cloud around it. This screening cloud has to meet restrictions, too. Its spatial integral 
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has to obey the sum rule (equation (6)), which for the metals amounts to exactly one 
electron. Moreover, the form of the screening cloud at the positron is restricted by the 
cusp condition. Finally, the LDA for positrons should be more favoured than the LDA 
for electrons, because the positron in a lattice samples predominantly the interstitial 
regions where the density variations are much slower than in the core regions, which 
are important for electrons. 

4. Conclusions 

We have shown in this work that ab-initio calculations of positron lifetimes for all 
metals are possible within the LDA. If self-consistent electron structures are used, the 
calculated lifetimes agree rather well with experiments. In the case of transition metals 
the lifetimes are maybe slightly too short. Using a semiempirical model for the band 
gap induced reduction of electronic screening, reliable predictions for positron lifetimes 
are possible also for semiconductors. The present theoretical ab-initio results allow 
detailed studies of trends in positron annihilation rates along the rows and columns 
of the Periodic Table and thereby complete our similar systematic work [9] on the 
energetics of positrons in metals. Of the future applications of the scheme, positron 
studies of metallic alloys, in which several phases may exist segregated from each 
other, look very appealing. For these studies the knowledge of positron lifetimes as 
well as the affinities (energetics) for different phases is crucial. 

For the systems studied in this work, with the exception of alkaline metals and 
semiconductors, methods using non-self-consistent electron structures give similar 
positron lifetimes to the ones employing self-consistent electron structures. This is due 
to the effect that the positron density relaxes following the electron density. Therefore 
in many practical applications, especially in those in which one is interested in the 
changes of the positron lifetime due to trapping at defects, the use of self-consistent 
electron structures is not necessary. In order to obtain reasonable estimates in these 
cases use of the three-dimensional superimposed atom method [7l is much more effi- 
cient than the use of the often very time-consuming self-consistent electron structure 
calculation methods. 
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